CDKD: A Clinical Database of Kidney Diseases
(Citations.....)

  1. Hueso M, de Haro L, Calabia J, Dal-Ré R, Tebé C, Gibert K, Cruzado J, M, Vellido A. Leveraging Data Science for a Personalized Haemodialysis. Kidney Dis 2020;6:385-394..

  2. Pawar G, Madden JC, Ebbrell D, Firman JW, Cronin MTD. In Silico Toxicology Data Resources to Support Read-Across and (Q)SAR. Front. Pharmacol. 2019; 10:561.

  3. Vanani BL, Nasvantbhai D, Sharma H, Patel SR, Vasava S. Evaluation of thyroid hormones in chronic kidney disease patients at tertiary care hospital-A comparative study International Journal of Clinical Biochemistry and Research 2017;4(2):119-122.

  4. Charlotte D. Holliday. Renal Dialysis Documentation and EMR Irregularity: A Phenomenological Review of Nephrologists University of Phoenix, PhD Dissertations 2017 .

  5. Martin Löpprich. Guide to the integration of a clinical register into an existing information system using the example of the clinical myeloma registry of the Heidelberg University Hospital Löpprich, Martin. Medical Faculty Heidelberg> Institute for Medical Biometry and Computer Science. Dissertation 2017

  6. Hen-Hsen Huang and Hsin-Hsi Chen. Big Health Data and Its Applications. Taiwan Medicine 2016; 20(6):589 - 594

  7. Regge D, Mazzetti S, Giannini V, Bracco C, Stasi M. (2016). Big data in oncologic imaging. Radiol Med. 2016 Sep 13. [Epub ahead of print]

  8. Chakraborty C, Bandyopadhyay S, Agoramoorthy G. (2016). India's Computational Biology Growth and Challenges. Interdiscip Sci. 2016 Sep;8(3):263-76. doi: 10.1007/s12539-016-0179-2.

  9. Ruogu Fang, Samira Pouyanfar, Yimin Yang, Shu-Ching Chen, S. S. Iyengar. (2016). Computational Health Informatics in the Big Data Age: A Survey. ACM Computing Surveys 06/2016; 49(1).

  10. DS Mapiye. (2016). Computational genomics approaches for kidney diseases in Africa. PhD Thesis. University of the Western Cape, South Africa

  11. Shah, B., Kirpalani, A., Sunder, S., Gupta, A., Khanna, U., Chafekar, D., … Ikizler, T. A. (2015). A prospective, multi-centre, observational study to examine kidney disease progression in adults with chronic kidney disease – CKDOD - Study design and preliminary results. BMC Nephrology, 16, 215. http://doi.org/10.1186/s12882-015-0191-5

  12. Lindoerfer D, Mansmann U. A Comprehensive Assessment Tool for Patient Registry Software Systems: The CIPROS Checklist. Methods Inf Med. 2015 Oct 12; 54(5):447-54.

  13. Gupta S, Chavan S, Deobagkar DN, Deobagkar DD. Bio/chemoinformatics in India: an outlook. Brief Bioinform. 2015 Jul; 16(4):710-31.

  14. Wang W, Krishnan E. Big data and clinicians: a review on the state of the science. JMIR Med Inform. 2014 Jan 17; 2(1):e1.

  15. Zhangfang Li, and Tao Hai. Advances single disease in ophthalmology database technology in information management. Journal of Medical Informatics 3 (2013): 44-46.