CDKD: A Clinical Database of Kidney Diseases

  1. Guide to the integration of a clinical register into an existing information system using the example of the clinical myeloma registry of the Heidelberg University Hospital Löpprich, Martin



  4. Regge D, Mazzetti S, Giannini V, Bracco C, Stasi M. (2016). Big data in oncologic imaging. Radiol Med. 2016 Sep 13. [Epub ahead of print]

  5. Chakraborty C, Bandyopadhyay S, Agoramoorthy G. (2016). India's Computational Biology Growth and Challenges. Interdiscip Sci. 2016 Sep;8(3):263-76. doi: 10.1007/s12539-016-0179-2.

  6. Ruogu Fang, Samira Pouyanfar, Yimin Yang, Shu-Ching Chen, S. S. Iyengar. (2016). Computational Health Informatics in the Big Data Age: A Survey. ACM Computing Surveys 06/2016; 49(1).

  7. DS Mapiye. (2016). Computational genomics approaches for kidney diseases in Africa. PhD Thesis. University of the Western Cape, South Africa

  8. Shah, B., Kirpalani, A., Sunder, S., Gupta, A., Khanna, U., Chafekar, D., … Ikizler, T. A. (2015). A prospective, multi-centre, observational study to examine kidney disease progression in adults with chronic kidney disease – CKDOD - Study design and preliminary results. BMC Nephrology, 16, 215.

  9. Lindoerfer D, Mansmann U. A Comprehensive Assessment Tool for Patient Registry Software Systems: The CIPROS Checklist. Methods Inf Med. 2015 Oct 12; 54(5):447-54.

  10. Gupta S, Chavan S, Deobagkar DN, Deobagkar DD. Bio/chemoinformatics in India: an outlook. Brief Bioinform. 2015 Jul; 16(4):710-31.

  11. Wang W, Krishnan E. Big data and clinicians: a review on the state of the science. JMIR Med Inform. 2014 Jan 17; 2(1):e1.

  12. Zhangfang Li, and Tao Hai. Advances single disease in ophthalmology database technology in information management. Journal of Medical Informatics 3 (2013): 44-46.